Ongoing projects

ADAPTED - Alzheimer's disease apolipoprotein pathology for treatment elucidation and development

The ADAPTED project aims to support the development of new medicines by investigating an area of Alzheimer’s disease research that has previously received little attention – the APOE gene. The APOE gene is a well-known risk factor for developing the disease, but precisely how this gene contributes to the risk of developing Alzheimer’s disease isn’t clear yet. People who carry the APOE4 version of the gene have a higher risk of developing Alzheimer’s disease. They also tend to develop the disease earlier in life. However, the reasons for this are not well understood. By bringing together leading experts in a range of state-of-the-art technologies, ADAPTED hopes to gain better insights into the causes of Alzheimer’s disease, something that would in turn help to develop better treatments for patients.


AMYPAD - Amyloid imaging to prevent Alzheimer’s disease

A common sign of Alzheimer’s disease are deposits of a protein called beta amyloid. The AMYPAD project studies the value of using an imaging technique called positron emission tomography (PET) to scan people’s brains for these beta amyloid deposits. AMYPAD will carry out beta amyloid PET imaging on a large number of people who are suspected to be in the early stages of Alzheimer’s disease. The goal is to determine the clinical added value of PET imaging in diagnosis and patient monitoring.

AMYPAD will work closely with the Innovative Medicines Initiative’s EPAD project, which is working to increase our understanding of the early stages of dementia and to create a platform to test treatments designed to prevent dementia.


EPAD - European prevention of Alzheimer’s dementia consortium

Today, research increasingly focuses on ways to prevent the onset of Alzheimer’s dementia in the first place. The EPAD project is pioneering a novel, more flexible approach to clinical trials of drugs designed to prevent Alzheimer’s disease dementia. Using an adaptive trial design should deliver better results faster and at lower cost. Find out more by watching this video:



EQIPD - European Quality In Preclinical Data

Poor quality data is an issue in many research fields – all too often, results carried out in one organisation cannot be replicated elsewhere, and it is not always clear why. In medical research, consequences include poor decision-making resulting in higher failure rates and longer drug development times. There is therefore an urgent need for simple, sustainable solutions to improve data quality, and that’s where the EQIPD project comes in. Their goal is to deliver simple recommendations to facilitate data quality without impacting innovation.


IM2PACT - Investigating mechanisms and models predictive of accessibility of therapeutics into the brain

As the name suggests, the blood-brain barrier (BBB) tightly controls access to our brains, allowing nutrients and essential substances through, but blocking pathogens, for example. Getting medicines through this protective shield is a major challenge for drug developers, particularly those developing biopharmaceuticals, which are based on large molecules like proteins and antibodies. The goal of IM2PACT is to advance our understanding of the BBB to facilitate the development of more effective treatments for a range of neurological and metabolic disorders. Specifically, the project aims to develop better models of the BBB so that researchers can study it more easily; investigate the biology of the BBB in both health and disease, and the transport routes across it; and to develop innovative systems capable of delivering medicines to the brain. The project will focus on two major disease areas: neurodegenerative diseases, including Alzheimer and Parkinson’s diseases, amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease and motor neurone disease), vascular dementia, and multiple sclerosis; and metabolism-related diseases (mainly diabetes and obesity).


IMPRiND - Inhibiting misfolded protein propagation in neurodegenerative diseases

Alzheimer’s and Parkinson’s diseases are characterised by the progressive loss of brain cells. Research suggests that this loss may be due to brain cells that release but also uptake misfolded proteins that clump together. This in turn might lead to an ongoing spreading of the death of brain cells.

If these processes could be blocked, disease progression could be halted. However, the forces driving these processes are currently poorly understood. The IMPRiND project is working to shed further light into this area and aims to understand how these proteins are handled once inside brain cells and how they are moved from cell to cell. To do this, the project team works together to develop standardised tools and tests to establish disease-relevant mechanisms that could be targeted by drugs in the future.


MOPEAD - Models of patient engagement for Alzheimer’s disease

Since researchers are increasingly focusing their efforts on better understanding the early onset of dementia and finding ways to prevent its onset in the first place, they need to work with people who are still in the very earliest stages of the disease. The MOPEAD project aims to identify and test different models for engaging with this important group and to determine which models work best in different situations. The project also aims to better understand the earliest stages of dementia and works to facilitate recruitment for clinical trials.



PD-MitoQUANT - A quantitative approach towards the characterisation of mitochondrial dysfunction in Parkinson's disease

PD-MitoQUANT is an Innovative Medicines Initiative (IMI) project that brings together academic experts, SMEs, pharmaceutical companies from the European Federation of Pharmaceutical Industries and Associations (EFPIA) and patient advocacy organisation Parkinson’s UK to:

  • improve our understanding of mitochondrial dysfunction in Parkinson’s,
  • identify and validate molecular drivers and mechanisms in Parkinson’s, and
  • discover innovative therapeutic targets that can be further progressed by the EFPIA partners in the future.


PHAGO - Inflammation and AD: modulating microglia function - focussing on TREM2 and CD33

Alzheimer’s disease (AD) is an age-related chronic neurodegenerative disease with progressive loss of nerve cells and their connectivity in the brain. People affected experience memory loss and progressive dementia. Recent research has shown that two genes involved in the innate immune system, TREM2 and CD33, are associated with Alzheimer’s disease and could therefore be potential targets for drug development. However, their exact role in the progression of the disease is still poorly understood. The PHAGO project aims to develop tools and methods to study the function of these genes and to identify druggable points for intervention. The project results will therefore pave the way for the development of novel drugs that could tackle Alzheimer’s disease via this route.

Have a look at the PHAGO flyer here to gain a high-level overview of the project.


PRISM - Psychiatric Ratings using Intermediate Stratified Markers: providing quantitative biological measures to facilitate the discovery and development of new treatments for social and cognitive deficits in AD, SZ, and MD

Social withdrawal is a common early symptom of many neurological disorders, including schizophrenia, Alzheimer’s disease, and major depressive disorder. However, the underlying, biological causes of this symptom are still poorly understood and may differ from one disease to another. The PRISM project will carry out a range of tests, including blood tests, brain scans, and measures of behaviour, on patients with these diseases in a bid to determine which biological parameters correlate with specific clinical symptoms, like social withdrawal. The hope is that the project’s findings will shed new light on the causes of mental illness and their symptoms and facilitate the development of much-needed new treatments.



RADAR-AD - Remote assessment of disease and relapse – Alzheimer’s disease

People in the earliest stages of Alzheimer’s disease experience declining cognitive and functional abilities, making it harder for them to remember things and places, carry out simple calculations, use a phone/computer, drive, and adhere to medications. The goal of the RADAR-AD consortium is to develop a digital platform that would draw on smartphone, wearable and home-based digital technologies to identify subtle changes in the cognitive and functional abilities of people living with Alzheimer’s disease. The project will adapt the existing RADAR-CNS project’s platform and experiences for Alzheimer’s disease. Among other things, the team will have to take account of the fact that many people living with Alzheimer’s disease are older and so may be less familiar with technology, while their condition may make it more difficult for them to learn to handle technological devices. People with Alzheimer’s disease will be fundamentally involved in the design and development of the project so that the clinical tests and final outcomes put in place are acceptable and appropriate for them. The platform will be tested in a clinical study of people with different stages of Alzheimer’s disease. Ultimately, the goal of the project is the development and validation of technology-enabled, quantitative and sensitive measures of functional decline in people with early stage AD.


RADAR-CNS - Remote Assessment of Disease and Relapse in Central Nervous System Disorders

The RADAR-CNS project aims to develop new ways of monitoring major depressive disorder, epilepsy, and multiple sclerosis by using wearable devices and smartphone technology. The key goal of the project is to improve patients’ symptoms and quality of life and to change how these and other chronic disorders are treated.

People with epilepsy, multiple sclerosis and depression often experience periods in which their symptoms are manageable, followed by periods of deterioration and acute illness (relapse). Patient surveys have repeatedly highlighted the need to predict when relapses will happen and to improve the treatments available to stop them from occurring. Continuous remote assessment using smartphones and wearable devices provides a complete picture of a patient’s condition at a level of detail which was previously unachievable. Moreover, it could potentially allow treatment to begin before a patient’s health deteriorates, preventing the patient from relapsing or worsening before they even sought treatment.